41) Selena Kuenzig, Keith Searles*, “Niobium Catalyzed Defluorination of Sp2 and Sp3 C-F Bonds.” – In Preparation.

40) Reece Johnson, Keith Searles*, “Bifunctional Silica Supported Niobium Catalyst: Self-Metathesis and Hydrogenation of Olefins.” – In Preparation.

39) Rahul Koottanil Haridasan, Nicole Giorgi, Khalil A. Abboud, Keith Searles*, “Bis-dipyrromethane Ligand Design for the Construction of Dinuclear Complexes.” – In Preparation.

38) Rahul Koottanil Haridasan, Shirley Hernandez, Selena Kuenzig, Gabriela Tejeda, Konstantin V. Bukhryakov*, Keith Searles*, “Silica-Supported Vanadium-Oxo-Alkylidene for Self-Metathesis of Propene” – In Preparation.

37) Yuxing Liang, Kiana A. Treaster, Ayan Majumder, Manoj Settipalli, Kanishka Panda, Shravan Godse, Rupam Roy, Ratul Mali, Zhongyong Wang, Yuxuan Luan, Peijie Hu, Keith Searles, David Charles McLeod, Kirt A. Page, Dayanni Bhagwandin, Edgar Meyhofer, Pramod Reddy, Alan J. H. McGaughey, Austin M. Evans,* Jonathan A. Malen*, “Anisotropic Thermal Conductivity in Imine-Linked Two-Dimensional Polymer Films Produced by Interfacial Polymerization.” ACS Nano, 2025, Accepted.

36) Reece Johnson, Peijie Hu, James Pugh, Rahul Koottanil Haridasan, Keith Searles*, “Arene Hydrogenation Utilizing Organometallic Early Transition Metal Precursors.” Catal. Sci. Technol., 2025, 15, 41. https://doi.org/10.1039/D4CY01275E

35) Giorgi, N., Haridasan, R. K., Abboud, K. A., Searles, K.*, “Dinuclear cobalt(II) bis-dipyrromethane complexes: Synthesis via divergent transmetalation reactions.” Inorg. Chem., 2024, 41, 19098. https://doi.org/10.1021/acs.inorgchem.4c02442.

34) Cannavacciuolo, F. D., Yadav, R., Esper, A., Vittoria, A., Antinucci, G., Zaccaria, F., Cipullo, R., Budzelaar, P. H. M., Busico, V., Goryunov, G. P., Uborsky, D. V., Voskoboynikov, A. Z., Searles, K., Ehm, C.*, Veige A. S.*, “A high-throughput approach to repurposing olefin polymerization catalysts for polymer upcycling.” Angew. Chem. Int. Ed., 2022, 61, e20220225. https://doi.org/10.1002/anie.202202258

33) Kane, A. Q., Esper, A. M., Searles, K., Ehm, C.*, Veige, A. S.*, “Probing β-Alkyl elimination and selectivity in polyolefin hydrogenolysis through DFT.” Catal. Sci. Technol., 2021, 11, 6155. https://doi.org/10.1039/D1CY01088C

32) Payard, P.-A., Rochlitz, L., Searles, K., Foppa, L., Leuthold, B., Safonova, O. V., Comas-Vives, A.*, Copéret, C.*, “Dynamics and site isolation: keys to high performance of silica-supported PtGa nanoparticles.” JACS Au, 2021, 1, 1445. https://doi.org/10.1021/jacsau.1c00212

31) Yakimov, A., Xu, J., Searles, K., Liao, W.-C., Antinucci, G., Friederichs, N., Busico, V., Copéret, C.*, “DNP-SENS formulation protocols to study surface sites in Ziegler-Natta Catalyst MgCl2 supports modified with internal donors.” J. Phys. Chem. C, 2021, 125, 15994. https://doi.org/10.1021/acs.jpcc.1c04447

30) Ashuiev, A., Humbert, M., Norsic, S., Blahut, J., Gajan, D., Searles, K., Klose, D., Lesage, A., Pintacuda, G., Raynaud, J.*, Monteli, V.*, Copéret, C.*, Jeschke, J.*, “Spectroscopic signature and structure of the active sites in Ziegler-Natta polymerization catalysts revealed by electron paramagnetic resonance.” J. Am. Chem. Soc., 2021, 143, 9791. https://doi.org/10.1021/jacs.1c02818

29) Meyet, J., Ashuiev, A., Noh, G., Newton, M. A., Klose, D., Searles, K., van Bavel, A. P., Horton, A. D., Jeschke, G., van Bokhoven, J. A.*,Copéret, C.*, “CH4-to-CH3OH on mononuclear CuII sites supported on Al2O3: structure of active sites from electron paramagnetic resonance.” Angew. Chem. Int. Ed., 2021, 60, 16200. https://doi.org/10.1002/anie.202105307

28) Rochlitz, L., Searles, K., Nater, D. F., Docherty, S. R., Gioffrè, D., Copéret, C.*, “A molecular analogue of the C-H activation intermediate of the silica-supported Ga(III) single-site propane dehydrogenation catalyst: structure and XANES signature.” Helv. Chim. Acta., 2021, 104, e2100078. https://doi.org/10.1002/hlca.202100078

27) Trummer, D., Searles, K., Algasov, A., Guda, S. A., Soldatov, A. V., Ramanantoanina, H., Safonova, O. V*., Guda, A. A.*, Copéret, C.*, “Deciphering the Phillips catalyst by orbital analysis and supervised machine learning from Cr pre-edge XANES of molecular libraries.” J. Am. Chem. Soc., 2021, 143, 7326. https://doi.org/10.1021/jacs.0c10791

26) Czerny, F., Searles, K., Šot, P., Teichert, J., Menezes, P., Copéret, C., Driess, M.* “A well-defined, silica-supported homobimetallic nickel hydride hydrogenation catalyst.” Inorg. Chem., 2021, 60, 5483. https://doi.org/10.1021/acs.inorgchem.0c03188

25) Ashuiev, A., Allouche, F., Wili, N., Searles, K., Klose, D., Copéret, C.*, Jeschke, G.* “Molecular and Supported Ti(III)-alkyls: efficient ethylene polymerizationdriven by the  π-character of metal-carbon bonds and back donation from a singly occupied molecular orbital.” Chem. Sci., 2021, 12, 780. https://doi.org/10.1039/D0SC04436A

24) Sorsche, D. U., Miehlich, M., Searles, K., Gouget, G., Zolnhofer, E. M., Fortier, S., Chen, C.-H., Gau, M. R., Carroll, P. J., Murray, C. B., Caulton, K. G., Khusniyarov, M. M.*, Meyer, K.*, Mindiola, D. J.* “Unusual Dinitrogen Binding and Electron Storage in Dinuclear Iron Complexes.” J. Am. Chem. Soc., 2020, 142, 8147. https://doi.org/10.1021/jacs.0c01488

23) Yakimov, A. V., Mance, D., Searles, K., Copéret, C.* “A formulation protocol with pyridine to enable Dynamic Nuclear Polarization Surface-Enhanced NMR Spectroscopy (DNP-SENS) on reactive surface sites: Case study with olefin polymerization and metathesis catalysts.” J. Phys. Chem. Lett., 2020, 11, 3401. https://doi.org/10.1021/acs.jpclett.0c00716

22) Lam, E., Noh, G., Chan, K. W., Larmier, K., Lebedev, D., Searles, K., Wolf, P., Safonova, O. V., Copéret, C.* “Enhanced CH3OH Selectivity in CO2Hydrogenation using Cu-based Catalysts Generated via SOMC from GaIIISingle-Sites.” Chem. Sci., 2020, 11, 7593. https://doi.org/10.1039/D0SC00465K

21) Rochlitz, L. S., Searles, K., Alfke, J., Zemlyanov, D., Safonova, O. V., Copéret, C.* “Silica-supported, narrowly distributed, subnanometric Pt–Zn particles from single sites with high propane dehydrogenation performance.” Chem. Sci., 2020, 11, 1549. https://doi.org/10.1039/C9SC05599A

20) Arancon, R., Saab, M., Morvan, A., Bonduelle-Skrzypczak, A., Taleb, A.-L., Gay, A.-S., Legens, C., Ersen, O., Searles, K., Mougel, V., Fedorov, A., Copéret, C.*, Raybaud, P.* “Combined Experimental and Theoretical Molecular Approach of the Catalytically Active Hydrotreating MoS2 Phases Promoted by 3d Transition Metals.” J. Phys. Chem. C, 2019, 123, 24659. https://doi.org/10.1021/acs.jpcc.9b08437

19) Meyet, J., Searles, K., Newton, M., van Bavel, A. P., Horton, A. D., van Bokhoven J., Copéret, C.* “Highly dispersed monomeric Cu sites on alumina for the selective oxidation of methane to methanol.” Angew. Chem. Int. Ed., 2019, 131, 566. https://doi.org/10.1002/ange.201903802

18) Noh, G., Lam, E., Alfke, J. L., Larmier, K., Searles, K., Wolf, P., Copéret, C.* “Selective hydrogenation of CO2 to CH3OH on supported Cu nanoparticles promoted by isolated TiIV surface sites on SiO2.” ChemSusChem., 2019, 12, 968. https://doi.org/10.1002/cssc.201900134

17) Searles, K., Chan, K. W., Mendes-Burak, J. A., Zemlyanov, D., Safonova, O. V., Copéret, C.* “Highly productive propane dehydrogenation catalyst using silica-supported Ga-Pt nanoparticles generated from single-sites.” J. Am. Chem. Soc., 2018, 140, 11674. https://doi.org/10.1021/jacs.8b05378

16) Gordon, C. P., Yamamoto, K., Searles, K., Shirase, S., Anderson, R. A., Eisenstein, O., Copéret, C.* “Metal alkyls programmed to generate metal alkylidenes by α-hydrogen abstraction: Prognosis from NMR chemical shift.” Chem. Sci., 2018, 9, 1912. https://doi.org/10.1039/C7SC05039A

15) Copéret, C.*, Allouche, F., Chan, K. W., Conley, M. P., Delley, M. F., Fedorov, A., Moroz, I. B., Mougel, V., Pucino, M., Searles, K., Yamamoto, K., Zhizhko, P. A. “Bridging the gap between industrial and well-defined supported catalysts.” Angew. Chem. Int. Ed., 2018, 57, 6398. https://doi.org/10.1002/anie.201702387

14) Searles, K., Siddiqi, G., Safonova, O. V., Copéret, C.* “Silica-supported isolated gallium sites as highly active, selective and stable propane dehydrogenation catalysts.” Chem. Sci., 2017, 8, 2661. https://doi.org/10.1039/C6SC05178B

13) Copéret, C.*, Estes, D. P., Larmier, K., Searles, K. “Isolated surface hydrides: Formation, structure, and reactivity.” Chem. Rev., 2016, 116, 8463. https://doi.org/10.1021/acs.chemrev.6b00082

12) Searles, K., Smith, K. T., Kurogi, T., Chen, C.-H., Carroll, P. J., Mindiola, D. J. * “Formation and redox interconversion of niobium methylidene and methylidyne complexes.” Angew. Chem. Int. Ed., 2016, 55, 6642. https://doi.org/10.1002/anie.201511867

11) Kamitani, M., Pintér, B., Searles, K., Crestani, M. G., Hickey, A., Manor, B., Carroll, P. J., Mindiola, D. J.* “Phosphinoalkylidene and -alkylidyne complexes of titanium: Intermolecular C-H bond activation and dehydrogenation reactions.” J. Am. Chem. Soc., 2015, 137, 11872. https://doi.org/10.1021/jacs.5b06973

10) Searles, K., Carroll, P. J., Mindiola, D. J.* “Anionic and mononuclear phosphinidene and imido complexes of niobium.” Organometallics, 2015, 34, 4641. https://doi.org/10.1021/acs.organomet.5b00518

9) Kamitani, M., Searles, K., Carroll, P. J., Mindiola, D. J.* “β-hydrogen abstraction of an ethyl group provides entry to stable titanium and zirconium ethylene complexes.” Organometallics, 2015, 34, 2558. https://doi.org/10.1021/om501226k

8) Searles, K., Carroll, P. J., Chen, C.-H., Pink, M., Mindiola, D. J.* “Niobium nitrides derived from nitrogen splitting.” Chem. Commun., 2015, 51, 3526. https://doi.org/10.1039/C4CC09563D

7) Searles, K., Fortier, S.*, Carroll, P. J., Sutter, J., Meyer, K.*, Mindiola, D. J.*, Caulton, K. G.* “A cis-divacant octahedral mononuclear iron(IV) imide.” Angew. Chem. Int. Ed., 2014, 53, 14139. https://doi.org/10.1002/anie.201407156

6) Searles, K., Chen, C.-H., Mindiola, D. J.* “A tantalum methylidene complex supported by a robust and sterically encumbering aryloxide ligand.” Organometallics, 2014, 33, 4192. https://doi.org/10.1021/om500197k

5) Searles, K., Keijzer, K., Chen, C.-H., Baik, M.-H., Mindiola, D. J.* “Binary role of an ylide in the formation of a terminal methylidene complex of niobium.” Chem. Commun., 2014, 50, 6267. https://doi.org/10.1039/C4CC01404A

4) Walker, R. L., Searles, K., Willard, J. A., Michelsen, R. R. H.* “Total reflection infrared spectroscopy of water-ice and frozen aqueous NaCl solutions.” J. Chem. Phys., 2013, 139, 244703. https://doi.org/10.1063/1.4841835

3) Searles, K., Tran, B. L., Pink, M., Chen, C.-H., Mindiola, D. J.* “3d Early transition metal complexes supported by a new sterically demanding aryloxide ligand.” Inorg. Chem., 2013, 52, 11126. https://doi.org/10.1021/ic401363p

2) Searles, K., Das, A. K., Buell, R. W., Pink, M., Chen, C.-H., Pal, K., Morgan, D. G., Mindiola, D. J., Caulton, K. G.* “2,2′-Pyridylpyrrolide ligand redistribution following reduction.” Inorg. Chem., 2013, 52, 5611. https://doi.org/10.1021/ic400803e

1) Searles, K.*, Pink, M., Caulton, K. G., Mindiola, D. J. “An iridium-pyridylpyrrolide complex exhibiting reversible binding of H2.” Dalton Trans., 2012, 41, 9619. https://doi.org/10.1039/C2DT30981E