1) Kane, A. Q., Esper, A. M., Searles, K., Ehm, C.*, Veige, A. S.*, “Probing β-Alkyl elimination and selectivity in polyolefin hydrogenolysis through DFT.” Catal. Sci. Technol., 2021, https://doi.org/10.1039/D1CY01088C


32) Payard, P.-A., Rochlitz, L., Searles, K., Foppa, L., Leuthold, B., Safonova, O. V., Comas-Vives, A.*, Copéret, C.*, “Dynamics and site isolation: keys to high performance of silica-supported PtGa nanoparticles.” JACS Au, 2021. https://doi.org/10.1021/jacsau.1c00212

31) Yakimov, A., Xu, J., Searles, K., Liao, W.-C., Antinucci, G., Friederichs, N., Busico, V., Copéret, C.*, “DNP-SENS formulation protocols to study surface sites in Ziegler-Natta Catalyst MgCl2 supports modified with internal donors.” J. Phys. Chem. C, 2021, 125, 15994. https://doi.org/10.1021/acs.jpcc.1c04447

30) Ashuiev, A., Humbert, M., Norsic, S., Blahut, J., Gajan, D., Searles, K., Klose, D., Lesage, A., Pintacuda, G., Raynaud, J.*, Monteli, V.*, Copéret, C.*, Jeschke, J.*, “Spectroscopic signature and structure of the active sites in Ziegler-Natta polymerization catalysts revealed by electron paramagnetic resonance.” J. Am. Chem. Soc., 2021, 143, 9791. https://doi.org/10.1021/jacs.1c02818

29) Meyet, J., Ashuiev, A., Noh, G., Newton, M. A., Klose, D., Searles, K., van Bavel, A. P., Horton, A. D., Jeschke, G., van Bokhoven, J. A.*,Copéret, C.*, “CH4-to-CH3OH on mononuclear CuII sites supported on Al2O3: structure of active sites from electron paramagnetic resonance.” Angew. Chem. Int. Ed., 2021, 60, 16200. https://doi.org/10.1002/anie.202105307

28) Rochlitz, L., Searles, K., Nater, D. F., Docherty, S. R., Gioffrè, D., Copéret, C.*, “A molecular analogue of the C-H activation intermediate of the silica-supported Ga(III) single-site propane dehydrogenation catalyst: structure and XANES signature.” Helv. Chim. Acta., 2021, 104, e2100078. https://doi.org/10.1002/hlca.202100078

27) Trummer, D., Searles, K., Algasov, A., Guda, S. A., Soldatov, A. V., Ramanantoanina, H., Safonova, O. V*., Guda, A. A.*, Copéret, C.*, “Deciphering the Phillips catalyst by orbital analysis and supervised machine learning from Cr pre-edge XANES of molecular libraries.” J. Am. Chem. Soc., 2021, 143, 7326. https://doi.org/10.1021/jacs.0c10791

26) Czerny, F., Searles, K., Šot, P., Teichert, J., Menezes, P., Copéret, C., Driess, M.* “A well-defined, silica-supported homobimetallic nickel hydride hydrogenation catalyst.” Inorg. Chem., 2021, 60, 5483. https://doi.org/10.1021/acs.inorgchem.0c03188

25) Ashuiev, A., Allouche, F., Wili, N., Searles, K., Klose, D., Copéret, C.*, Jeschke, G.* “Molecular and Supported Ti(III)-alkyls: efficient ethylene polymerizationdriven by the  π-character of metal-carbon bonds and back donation from a singly occupied molecular orbital.” Chem. Sci., 2021, 12, 780. https://doi.org/10.1039/D0SC04436A

24) Sorsche, D. U., Miehlich, M., Searles, K., Gouget, G., Zolnhofer, E. M., Fortier, S., Chen, C.-H., Gau, M. R., Carroll, P. J., Murray, C. B., Caulton, K. G., Khusniyarov, M. M.*, Meyer, K.*, Mindiola, D. J.* “Unusual Dinitrogen Binding and Electron Storage in Dinuclear Iron Complexes.” J. Am. Chem. Soc., 2020, 142, 8147. https://doi.org/10.1021/jacs.0c01488

23) Yakimov, A. V., Mance, D., Searles, K., Copéret, C.* “A formulation protocol with pyridine to enable Dynamic Nuclear Polarization Surface-Enhanced NMR Spectroscopy (DNP-SENS) on reactive surface sites: Case study with olefin polymerization and metathesis catalysts.” J. Phys. Chem. Lett., 2020, 11, 3401. https://doi.org/10.1021/acs.jpclett.0c00716

22) Lam, E., Noh, G., Chan, K. W., Larmier, K., Lebedev, D., Searles, K., Wolf, P., Safonova, O. V., Copéret, C.* “Enhanced CH3OH Selectivity in CO2Hydrogenation using Cu-based Catalysts Generated via SOMC from GaIIISingle-Sites.” Chem. Sci., 2020, 11, 7593. https://doi.org/10.1039/D0SC00465K

21) Rochlitz, L. S., Searles, K., Alfke, J., Zemlyanov, D., Safonova, O. V., Copéret, C.* “Silica-supported, narrowly distributed, subnanometric Pt–Zn particles from single sites with high propane dehydrogenation performance.” Chem. Sci., 2020, 11, 1549. https://doi.org/10.1039/C9SC05599A

20) Arancon, R., Saab, M., Morvan, A., Bonduelle-Skrzypczak, A., Taleb, A.-L., Gay, A.-S., Legens, C., Ersen, O., Searles, K., Mougel, V., Fedorov, A., Copéret, C.*, Raybaud, P.* “Combined Experimental and Theoretical Molecular Approach of the Catalytically Active Hydrotreating MoS2 Phases Promoted by 3d Transition Metals.” J. Phys. Chem. C, 2019, 123, 24659. https://doi.org/10.1021/acs.jpcc.9b08437

19) Meyet, J., Searles, K., Newton, M., van Bavel, A. P., Horton, A. D., van Bokhoven J., Copéret, C.* “Highly dispersed monomeric Cu sites on alumina for the selective oxidation of methane to methanol.” Angew. Chem. Int. Ed., 2019, 131, 566. https://doi.org/10.1002/ange.201903802

18) Noh, G., Lam, E., Alfke, J. L., Larmier, K., Searles, K., Wolf, P., Copéret, C.* “Selective hydrogenation of CO2 to CH3OH on supported Cu nanoparticles promoted by isolated TiIV surface sites on SiO2.” ChemSusChem., 2019, 12, 968. https://doi.org/10.1002/cssc.201900134

17) Searles, K., Chan, K. W., Mendes-Burak, J. A., Zemlyanov, D., Safonova, O. V., Copéret, C.* “Highly productive propane dehydrogenation catalyst using silica-supported Ga-Pt nanoparticles generated from single-sites.” J. Am. Chem. Soc., 2018, 140, 11674. https://doi.org/10.1021/jacs.8b05378

16) Gordon, C. P., Yamamoto, K., Searles, K., Shirase, S., Anderson, R. A., Eisenstein, O., Copéret, C.* “Metal alkyls programmed to generate metal alkylidenes by α-hydrogen abstraction: Prognosis from NMR chemical shift.” Chem. Sci., 2018, 9, 1912. https://doi.org/10.1039/C7SC05039A

15) Copéret, C.*, Allouche, F., Chan, K. W., Conley, M. P., Delley, M. F., Fedorov, A., Moroz, I. B., Mougel, V., Pucino, M., Searles, K., Yamamoto, K., Zhizhko, P. A. “Bridging the gap between industrial and well-defined supported catalysts.” Angew. Chem. Int. Ed., 2018, 57, 6398. https://doi.org/10.1002/anie.201702387

14) Searles, K., Siddiqi, G., Safonova, O. V., Copéret, C.* “Silica-supported isolated gallium sites as highly active, selective and stable propane dehydrogenation catalysts.” Chem. Sci., 2017, 8, 2661. https://doi.org/10.1039/C6SC05178B

13) Copéret, C.*, Estes, D. P., Larmier, K., Searles, K. “Isolated surface hydrides: Formation, structure, and reactivity.” Chem. Rev., 2016, 116, 8463. https://doi.org/10.1021/acs.chemrev.6b00082

12) Searles, K., Smith, K. T., Kurogi, T., Chen, C.-H., Carroll, P. J., Mindiola, D. J. * “Formation and redox interconversion of niobium methylidene and methylidyne complexes.” Angew. Chem. Int. Ed., 2016, 55, 6642. https://doi.org/10.1002/anie.201511867

11) Kamitani, M., Pintér, B., Searles, K., Crestani, M. G., Hickey, A., Manor, B., Carroll, P. J., Mindiola, D. J.* “Phosphinoalkylidene and -alkylidyne complexes of titanium: Intermolecular C-H bond activation and dehydrogenation reactions.” J. Am. Chem. Soc., 2015, 137, 11872. https://doi.org/10.1021/jacs.5b06973

10) Searles, K., Carroll, P. J., Mindiola, D. J.* “Anionic and mononuclear phosphinidene and imido complexes of niobium.” Organometallics, 2015, 34, 4641. https://doi.org/10.1021/acs.organomet.5b00518

9) Kamitani, M., Searles, K., Carroll, P. J., Mindiola, D. J.* “β-hydrogen abstraction of an ethyl group provides entry to stable titanium and zirconium ethylene complexes.” Organometallics, 2015, 34, 2558. https://doi.org/10.1021/om501226k

8) Searles, K., Carroll, P. J., Chen, C.-H., Pink, M., Mindiola, D. J.* “Niobium nitrides derived from nitrogen splitting.” Chem. Commun., 2015, 51, 3526. https://doi.org/10.1039/C4CC09563D

7) Searles, K., Fortier, S.*, Carroll, P. J., Sutter, J., Meyer, K.*, Mindiola, D. J.*, Caulton, K. G.* “A cis-divacant octahedral mononuclear iron(IV) imide.” Angew. Chem. Int. Ed., 2014, 53, 14139. https://doi.org/10.1002/anie.201407156

6) Searles, K., Chen, C.-H., Mindiola, D. J.* “A tantalum methylidene complex supported by a robust and sterically encumbering aryloxide ligand.” Organometallics, 2014, 33, 4192. https://doi.org/10.1021/om500197k

5) Searles, K., Keijzer, K., Chen, C.-H., Baik, M.-H., Mindiola, D. J.* “Binary role of an ylide in the formation of a terminal methylidene complex of niobium.” Chem. Commun., 2014, 50, 6267. https://doi.org/10.1039/C4CC01404A

4) Walker, R. L., Searles, K., Willard, J. A., Michelsen, R. R. H.* “Total reflection infrared spectroscopy of water-ice and frozen aqueous NaCl solutions.” J. Chem. Phys., 2013, 139, 244703. https://doi.org/10.1063/1.4841835

3) Searles, K., Tran, B. L., Pink, M., Chen, C.-H., Mindiola, D. J.* “3d Early transition metal complexes supported by a new sterically demanding aryloxide ligand.” Inorg. Chem., 2013, 52, 11126. https://doi.org/10.1021/ic401363p

2) Searles, K., Das, A. K., Buell, R. W., Pink, M., Chen, C.-H., Pal, K., Morgan, D. G., Mindiola, D. J., Caulton, K. G.* “2,2′-Pyridylpyrrolide ligand redistribution following reduction.” Inorg. Chem., 2013, 52, 5611. https://doi.org/10.1021/ic400803e

1) Searles, K.*, Pink, M., Caulton, K. G., Mindiola, D. J. “An iridium-pyridylpyrrolide complex exhibiting reversible binding of H2.” Dalton Trans., 2012, 41, 9619. https://doi.org/10.1039/C2DT30981E